Packing and Covering Properties of CDCs and Subspace Codes

نویسندگان

  • Maximilien Gadouleau
  • Zhiyuan Yan
چکیده

Codes in the projective space over a finite field, referred to as subspace codes, and in particular codes in the Grassmannian, referred to as constant-dimension codes (CDCs), have been proposed for error control in random network coding. In this paper, we first study the covering properties of CDCs. We determine some fundamental geometric properties of the Grassmannian. Using these properties, we derive bounds on the minimum cardinality of a CDC with a given covering radius and determine the asymptotic rate of optimal covering CDCs. We then study the packing and covering properties of subspace codes, which can be used with the subspace metric or the modified subspace metric. We investigate the properties of balls in the projective space. Using these results, we derive bounds on the cardinalities of packing and covering subspace codes, and we determine the asymptotic rate of optimal packing and optimal covering subspace codes for both metrics. We thus show that optimal packing CDCs are asymptotically optimal packing subspace codes for both metrics. However, optimal covering CDCs can be used to construct asymptotically optimal covering subspace codes only for the modified subspace metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Decoder Error Probability of Rank Metric Codes and Constant-Dimension Codes

Rank metric codes can either be used as such for error correction in data storage equipments, or be lifted into constant-dimension codes (CDCs) and thus be used for error correction in random network coding. This paper investigates the decoder error probability (DEP) of rank metric codes and CDCs. We first study the DEP of rank metric codes using a bounded rank distance decoder. We derive asymp...

متن کامل

Combinatorial Bounds for List Decoding of Subspace Codes

Abstract—Codes constructed as subsets of the projective geometry of a vector space over a finite field have recently been shown to have applications as random network error correcting codes. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or equivalently, a subset of the vertices of the corresponding Grassmannian graph....

متن کامل

List Decoding of Subspace Codes

Codes constructed as subsets of the projective geometry of a vector space over a finite field have recently been shown to have applications as unconditionally secure authentication codes and random network error correcting codes. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or equivalently, a subset of the vertices o...

متن کامل

Combinatorial Bounds for List Decoding of Subspace Codes (Extended Version)

Codes constructed as subsets of the projective geometry of a vector space over a finite field have recently been shown to have applications as unconditionally secure authentication codes and random network error correcting codes. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or equivalently, a subset of the vertices o...

متن کامل

Isotropic Constant Dimension Subspace Codes

 In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0811.4163  شماره 

صفحات  -

تاریخ انتشار 2008